

Owner: VOLA A/S
No.: MD-22015-EN_re

Issued: 20-12-2022
Issued first time: 19-10-2022
Valid to: 19-10-2027

3rd PARTY **VERIFIED**

EPD

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804:2012

Owner of the declaration

VOLA A/S Lunavej 2 8700 Horsens Denmark

VAT no.: 17531328

Programme

EPD Danmark www.epddanmark.dk

☐ Industry EPD

Declared products

HV1E-16

HV1E2-19

HV1E-40

HV1E-27

HV1E-60

HV1E-64

Production site

VOLA A/S

Lunavej 2

8700 Horsens

Denmark

Product(s) use

VOLA fixtures are used in kitchens and bathrooms.

Declared/ functional unit

1 fixture with RSL of 30 years

Year of data

2020

EPD version

The first issue

Issued: 20-12-2022

Valid to:

19-10-2027

Basis of calculation

This EPD is developed in accordance with the European standard EN 15804+A2.

Comparability

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

Use

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

EPD type

- \square Cradle-to-gate with modules C1-C4 and D
- \square Cradle-to-gate with options, modules C1-C4 and D
- □Cradle-to-gate
- □Cradle-to-gate with options

CEN standard EN 15804 serves as the core PCR

Independent verification of the declaration and data, according to EN ISO 14025

 \square internal \boxtimes external

Ninkie Bendtsen

Third party verifier:

[Name] EPD Danmark

Life c	ycle s	stages	and	modul	es (M	ND =	modu	ile no	t decla	ared)						
l	Product			ruction cess				Use					End o	of life		Beyond the system boundary
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Re-use, recovery, and recycling potential
A1	A2	А3	A4	A5	В1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	Х

Product information

Product description

The main product components are shown in Table 1. Values are given as intervals covering the seven products with six different surfaces. Specific recipes are used, and the composition of input materials is 100 % in mass -% of declared products.

Table 1: Material composition of products

Material	Amount [%]
Steel	6,47 – 51,54
Brass	38,19 – 83,94
Plastic	2,64 – 2,89
Rubber	0,36 – 0,38
Electronic	0,01 – 2,61
Other metals	0,14 - 0,54
Coating	0 – 0,27
PVD	0 – 1,24
Battery	2,37 – 2,52
Ceramics	0,003

Table 2: Material composition of Sales and Transport Packaging for the final VOLA product

Material	Amount [%]
LDPE	27,3
EPS	2,1
Cardboard	60,9
Paper	9,8
Total	100

Representativity

This declaration, including data collection and the modeled foreground system including results, represents the production of 1 fixture from VOLA on the production site located in Denmark. Product-specific data are based on average values covering the period from 01.01.2020 to 31.12.2020. Background data are based on SimaPro 9.2 and are less than 10 years old. Only in a few cases are SimaPro 9.2 data supplemented with data from Ecoinvent 3.7.1 (2020). Generally, the used background datasets are of high quality, and the majority of the datasets are only a few years old. During 2020, VOLA switched to individual declaration and electricity produced from green sources i.e. wind energy in this case. Therefore, it was possible to account for the whole amount of wind energy provision for the year 2020.

Hazardous substances

Declared products do not contain substances listed in the" Candidate List of Substances of Very High Concern for authorization" with the exception of lead contained in brass with a concentration above 0,1 %.

(http://echa.europa.eu/candidate-list-table)

Essential characteristics

There is no harmonized specification, but VOLA produces products according to relevant product standards. Components that are in contact with water are produced in lead-free brass, according to 4MS and California Assembly Bill AB1953. Components in stainless steel are produced in the material according to EN10088-3:2014 and AISI316 (American Iron and Steel Institute)

Further technical information can be obtained by contacting the manufacturer or on the manufacturer's website:

http://www.vola.com

Reference Service Life (RSL)

A reference service life (RSL) for all products is declared for 30 years. The lifespan of products has been provided by the manufacturer VOLA based on "BUILD REPORT 2021" Version 2021 – lifetime tables: group 53 (3) = lifetime of 30 years (BUILD REPORT 2021).

Picture of products

Figure 1: HV1E & HV1EN, HV1E/150 & HV1EN/150, HV1E2 & HV1EN2, and HV1E2/150

Figure 2: Battery 1,5 V AA

Seven products (HV1E, HV1E2, HV1EN, HV1EN2, HV1EN-150, HV1E-150, and HV1E2-150) are calculated in six different surface groups (16 and 20, 19, 40, 27, 60, 64), see Figure 1 and Figure 2.

Group 4 called Colors have more surfaces: Grey (02), Blue (04), Orange (05), Light green (06), Yellow (08), Dark grey (09), Mocca (12), Bright red (14), Dark blue (15), Gloss black (17), Gloss white (18), Carmine red (21), Pink (25), Matt black (27), and Matt white (28).

Group 5 called Exclusive color with PVD on Brass have also more surfaces: Black (60), Deep black (62), Copper (63), Gold (65), and Nickel (68).

Group 6 called Exclusive color with PVD on Stainless steel have also more surfaces: Brushed black (61), Brushed copper (64), Brushed gold (70), and Dark brushed copper (71).

LCA background

Declared unit

The declared unit is taken as the input of materials in order to produce 1 fixture.

The LCI and LCIA results in this EPD relate to 1 fixture from VOLA for the types: HV1E, HV1E2, HV1EN, HV1EN2, HV1EN-150, HV1E-150, and HV1E2-150.

Table 3Table 2 shows declared units for 6 product groups with 7 different surfaces (16 and 20, 19, 40, 27, 60, 64) and 7 different variations of products (HV1E, HV1E2, HV1EN, HV1EN2, HV1EN-150, HV1E-150, and HV1E2-150).

The results for:

- Group no. 1 refers to Table 7 to Table 11
- Group no. 2 refers to Table 12 to Table 16
- Group no. 3 refers to Table 17 to Table 21
- Group no. 4 refers to Table 22 to Table 26
- Group no. 5 refers to Table 27 to Table 31
- Group no. 6 refers to Table 32 to Table 36

PCR

This EPD is developed according to the core rules for the product category of construction products in EN 15804, and Part B/ PCR-Part B: Requirements on the EPD for Bathroom and showers.

Table 3: Declared unit

			ċ		Р	roduct	name	/ Valu	ie			n kg
Group no.	Surface/Materia	I	Surface no.	HV1E	HV1E2	HV1EN	HV1EN2	HV1E-150	HV1EN-150	HV1E2-150	Unit	Conversion factor to 1 k
1	Polished and brushed chrome	Polished chrome	16	2,31	2,32	2,32	2,45	2,36	2,48	2,37	kg/piece	0,42
1	Polistied and brustied chrome	Brushed chrome	20	2,32	2,34	2,45	2,47	2,37	2,50	2,39	kg/piece	0,42
2	Natural brass	Natural brass	19	2,31	2,32	2,39	2,41	2,36	2,44	2,37	kg/piece	0,41
3	Stainless steel	Stainless steel	40	2,22	2,23	2,35	2,36	2,25	2,38	2,26	kg/piece	0,44
4	Colors	Matt black	27	2,39	2,42	2,39	2,55	2,44	2,44	2,46	kg/piece	0,41
5	Exclusive color (PVD on Brass)	Black	60	2,37	2,39	2,46	2,48	2,41	2,49	2,42	kg/piece	0,41
6	Exclusive color (PVD on Stainless steel)	64	2,28	2,30	2,41	2,43	2,31	2,44	2,34	kg/piece	0,41	
_	Declared unit					1				piece	0,39 - 0,45	

Flow diagram

Figure 3: Flow diagram of product system with modules A1-D

The Flow diagram (Figure 3) conforms with the requirements of the modular approach and shows all phases. All phases are described below.

System boundary

This EPD is based on a cradle-to-grave LCA, in which 100 weight-% has been accounted for.

The general rules for the exclusion of inputs and outputs follow the requirements in EN 15804, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

Product stage (A1-A3) includes:

This product stage includes the acquisition of all raw materials, products, and energy, transport to the production site, packaging, and waste processing up to the "end-of-waste" state or final disposal. The LCA results are declared in aggregated form for the product stage, which means, that the sub-modules A1, A2, and A3 are declared as one module A1-A3. The manufacturing process is taken place in Denmark.

A1: Extraction and processing of raw materials

VOLA uses the purest (primary) steel and brass to make sure the products are built to last. Components from plastic, rubber, batteries, electronic, ceramic, nickel, and chrome are reproduced from suppliers.

The materials that are used to pack all raw materials are metal strips, cardboard, paper, wood, and plastic.

A2: Transport to the production site in Horsens, Denmark

The raw materials are transported to the manufacturing site. The modelling includes road and/or flight transportation of each raw material. The transportation of all raw materials is by trucks and/or airplanes.

A3: Manufacturing processes

The production of packaging materials is taken into account at this stage. The processing of any waste arising from this stage is also included. The main raw material is stainless steel and brass. These materials constitute 80-90 % of the total product. Stainless steel components have different qualities: 304L, and 316L. The brass components are of different qualities: CW508L, CW511, and CW614N. The rest of the components are mainly

made of different kinds of rubber and plastic materials.

From solid brass/stainless steel rods or pipes, components are rotated, drilled, or milled on CNC machines. Subsequently, the components are ground/polished to create a unique surface, either by manual or automatic processes. Some components are hand-soldered or soldered by induction. The finished polished components are treated with a surface finish depending on the finish the customer wishes. Production is based on LEAN-production, where stocks are minimized and where products are put into production as soon as they are sold (Make to order, MTO).

The colored surfaces in product group no 4. represented by surface no. 27 also include powder coating material. The waste of brass from production is 55-57 % from groups no. 1, 2, 4, and 5; 73 % of brass waste is from groups no. 3 and 6.

The waste of steel from production is 73 % for group no. 1, 63 % of steel waste is from groups no. 2, 4, and 5, 48-49 % of steel waste is from groups no. 3 and 6.

The brass and steel that are cut during manufacturing processes are recycled and transported by lorry to the sorting and collecting center.

The disposal of the packaging of raw materials is taken into account at this stage. 55 % of wood and 20 % of plastic are recycled, and 45 % of wood and 80 % of plastic are incinerated. The rest of the packaging material (cardboard, paper, and metal) is transported only to the sorting and collecting center, no further processes are included.

Transportation to the sorting and collecting center is covered by a European average EURO 5 lorry 16 t with a diesel engine, and distance to the recycling and incineration station is covered by a European average EURO 5 lorry >32 tons with a diesel engine.

The construction process stage (A4-A5) includes:

A4: Transportation from the VOLA production site in Horsens, Denmark to customers

Distribution to customers is based on the current European market situation and takes into account not only the current fleet mix with primarily Euro 5 vehicles but also vehicle loading with an average of 5 t and effective distances, see Table 37: Average transport to the building site (A4)Table 37. It is implemented within Europe using diesel-powered trucks.

A5: Installation of products

Installation is simple and does not require any relevant energy consumption or use of materials, due to manual installment by technicians.

Mounting instructions are included with the product or can be downloaded on: www.VOLA.com

Apart from the waste of sales and transport packaging for the final VOLA product (paper, cardboard, plastics), no additional material flows are generated during installation.

Overall, 58 % of the sales and transport packaging for the final VOLA product is recycled, 19 % is transported to the landfill, and 23 % is incinerated, with the potential benefits reported in module D.

Waste packaging materials are transported 300 km to the recycling center, 100 km to the incineration station, and 50 km to the landfill. Transportation is covered by a European average EURO 5 lorry 16 t with a diesel engine.

Use stage (B1-B7) includes:

B1: Use

The product has a reference service life of a minimum of 30 years. This determined that the product will last at least 30 years provided that the requirements for maintenance and repair throughout this period are kept. The lifespan of products has been provided by the manufacturer, VOLA. This LCA phase scenario includes a use stage based in Europe. There are no direct emissions from the use of VOLA products.

B2: Maintenance

VOLA has declaimed this maintenance information. Maintenance instructions are part of the VOLA product, which also be downloaded at: www.VOLA.com

Waste packaging materials resulting from the maintenance are omitted.

B3: Repair

The product is made of a few parts that can easily be changed and replaced by new parts. The service interval for the VOLA parts depends on use and water quality scenarios. The estimated service interval is approx. 10 years. Parts that are calculated for repair are hoses, cartridges, and pilators.

VOLA guarantees that it is possible to get spare parts a minimum of 30 years from the day the product is ordered. Service drawing is available on: www.VOLA.com

B4: Replacement

There is no calculated replacement due to the declaration for a product life of 30 years.

B5: Refurbishment

No refurbishment is taken into account within 30 years.

(B6-B7) Consumption data

This use stage consists of energy and water consumption for the users with an assumption to be used in bathrooms and kitchens for 30 years. The energy and water use calculation follows the formula provided in the reference PCR. The energy is based on the European grid consumption mix. Water consumption is based on the European market for tap water.

Sensor "hand-free" washbasin taps ensure low water consumption thanks to efficient control electronics. The actual amount of water and energy that is consumed during use partly depends on user behaviour. The technical operating scenario is available in Table 4. The estimation has been made for the usage of tap aerators with 1,9 l/min water consumption, an average of 100 cycles per day, and a cycle time of 5 seconds, see Table 5 and Table 6.

Table 4: Consumption data in the use stage – Operational energy use and water use

Technical data		Battery (2 x AA)	Mains
Flow rate	l/min	1,9	1,9
Standby consumption of the PSU	W	-	≤ 0,3
Energy consumption of the PSU (100 cycles per day in 1 year)	kWh	-	0,9
Battery lifetime when used 100 times a day (type AA batteries)	years	2	-
Possible Cycle time settings	Sec.	(0-1-3-5-8-10-15-20)	(0-1-3-5-8-10-15-20)

Table 5: Consumption data - cycle time (1,9 l/min)

1,	1,9 l/min water-saving aerators and Cycle time Settings of 5 sec. (Default sensor setting 120mm)								
			Intensity of u	se	Water cor	sumption	Energy consumption		
Use scer	nario	Dor dov	Per year	Per RSL	[Litres]	[Litres]	[kWh]	[kWh]	
		Per day		Per RSL	per year	per RSL	per year	per RSL	
High-use (Public buildings)	0,16 liter per use	300	109.500	3.285.000	17.520	525.600	5,328	159,84	
Medium (Office buildings)	0,16 liter per use	150	547.50	1.642.500	8.760	262.800	3,978	119,34	
Average building	0,16 liter per use	100	365.00	1.095.000	5.840	175.200	3,528	105,84	
Low (Private homes)	0,16 liter per use	30	109.50	328.500	1.752	52.560	2,898	86,94	

Table 6: Construction data

Name	Value	Unit
Maximum load temperature permanent operation	60	°C
Maximum load temperature temporary operation	70	°C
Flow rate (indications for a pressure range of 1-3 bar)	0,3	m³/h
Sound emissions	0-20	dB

End of life stage (C1-C4) includes:

The end-of-life stage consists of the deconstruction/demolition, transport, waste management, and disposal processes to manage the product as waste after the use phase of 30 years life span.

The generated waste in modules C1-C4 is included up to the "end-of-waste" state or final disposal, with the potential net benefits reported in module D. The end-of-life stage is based on the European market.

C1: Deconstruction, Demolition

For the demolition of water basin mixers, the energy consumption is 0,1 kWh. The electricity is based on the European grid mix.

C2: Transport

This stage includes the transportation of the demolished product. It is considered that 2,5 % of product parts are transported 100 km to the incineration station, 89,4 % of the product is recycled and transported 300 km, and 8,1 % of the product is transported 50 km to the landfill. Transport is covered by a European average EURO 5 lorry 16 t with a diesel engine.

C3: Waste Processing

The end-of-life stage represents the waste scenario after a use stage where 2,5 % of the product parts are assumed to be incinerated in module C3 with energy recovery accounted for in module D. Overall, 89,4 % of the product will be recycled with energy recovery accounted for in module D.

C4: Disposal

Overall, 8,1 % of the product will be transported to a landfill.

Beyond the system boundary (D) includes:

Module D includes reuse, recovery, and/or recycling potential, expressed as net impact and benefits, due to reuse, recycling, and incineration of materials with energy recovery in modules A5 and C3.

The reused components made from raw materials in the product stage were assumed to replace similar components from raw materials. The plastic and rubber parts of the product are assumed to be incinerated at the end-of-life stage in module C3, whereas an energy recovery (75 % heat, 25 % electricity) and energy efficiency (80 % for heat, 25 % for electricity) from the incineration process is accounted for in module D.

The wooden pallet is part of a return system, and therefore only the transportation is a part of this study. If the wooden part was not part of a return system, then the benefits would be considerably higher for the system. The benefits of recycling chips are uncertain and not included in the assessment.

LCA results

The significant difference in the environmental impact lies in the base material and the surface treatment, and not in the product manufacturing. Therefore, environmental calculations appear on the following pages based on the basic material (brass/stainless) and the following surface treatments (no. 1-6). The potential environmental impact variation between the products and colors is below 10 % within the six different surface groups, thus justifying their grouping in one group and represented by the results of one product.

- Group no. 1. Polished and brushed chrome, represented by HV1E-16 Polished chrome
- Group no. 2. Natural brass, represented by HV1E2-19 Natural brass
- Group no. 3. Stainless steel, represented by HV1E-40 Stainless steel
- Group no. 4. Colors, represented by HV1E-27 Matt black
- Group no. 5. Exclusive color (PVD on Brass), represented by HV1E-60 Black
- Group no. 6. Exclusive color (PVD on Stainless steel), represented by HV1E-64 Brushed copper

Group 1: Polished and brushed chrome is represented by HV1E-16

Table 7: Environmental impact indicators

	ENVIRONMENTAL IMPACTS PER FIXTURE															
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	СЗ	C4	D
GWP-	kg CO ₂ -	3,09E+	5,33E-	2,16E-	0,00E+	7,07E+	2,80E+	0,00E+	0,00E+	4,27E+	5,91E+	4,04E-	1,30E-	5,19E-	5,22E-	-2,43E
total	eq.	01	01	01	00	00	00	00	00	01	01	02	01	01	02	-01
GWP-fossil	kg CO ₂ -	3,07E+	5,32E-	1,12E-	0,00E+	1,40E+	2,76E+	0,00E+	0,00E+	4,13E+	5,78E+	3,90E-	1,30E-	5,18E-	5,05E-	-2,02E
	eq.	01	01	01	00	01	00	00	00	01	01	02	01	01	03	-01
GWP-	kg CO ₂ -	1,15E-	5,75E-	1,04E-	0,00E+	-1,81E	4,19E-	0,00E+	0,00E+	1,33E+	1,20E+	1,26E-	1,25E-	1,23E-	4,72E-	-3,99E
biogenic	eq.	01	04	01	00	+01	02	00	00	00	00	03	04	03	02	-02
GWP-	kg CO ₂ -	5,98E-	3,18E-	8,33E-	0,00E+	1,12E+	2,10E-	0,00E+	0,00E+	9,76E-	1,00E-	9,22E-	6,12E-	4,42E-	2,76E-	-3,06E
luluc	eq.	02	04	06	00	01	03	00	00	02	01	05	05	04	06	-04
ODP	kg CFC	1,81E-	1,16E-	4,44E-	0,00E+	2,79E-	3,01E-	0,00E+	0,00E+	2,08E-	3,86E-	1,97E-	2,92E-	4,17E-	7,07E-	-9,84E
	11 -eq.	06	07	09	00	06	07	00	00	06	06	09	08	09	10	-09
AP	mol H ⁺⁻	1,70E+	2,07E-	1,27E-	0,00E+	1,39E-	2,43E-	0,00E+	0,00E+	2,35E-	3,22E-	2,22E-	5,17E-	1,16E-	2,28E-	-9,34E
	eq.	00	03	04	00	01	02	00	00	01	01	04	04	03	05	-04
EP-	kg P-eq.	1,35E-	4,94E-	2,13E-	0,00E+	4,95E-	1,51E-	0,00E+	0,00E+	4,16E-	4,17E-	3,93E-	9,77E-	1,14E-	1,02E-	-8,01E
freshwater		01	05	06	00	03	03	00	00	02	02	05	06	04	06	-05
EP- marine	kg N-eq.	9,39E- 02	5,68E- 04	9,00E- 05	0,00E+ 00	1,11E- 01	3,24E- 03	0,00E+ 00	0,00E+ 00	3,92E- 02	6,21E- 02	3,70E- 05	1,51E- 04	2,11E- 04	9,86E- 05	-2,15E -04
EP-	mol N-	1,25E+	6,20E-	4,79E-	0,00E+	4,44E-	3,59E-	0,00E+	0,00E+	3,45E-	5,90E-	3,26E-	1,64E-	2,10E-	7,63E-	-2,05E
terrestrial	eq.	00	03	04	00	01	02	00	00	01	01	04	03	03	05	-03
РОСР	kg NMVOC- eq.	3,49E- 01	1,94E- 03	1,55E- 04	0,00E+ 00	7,57E- 02	1,10E- 02	0,00E+ 00	0,00E+ 00	9,49E- 02	1,92E- 01	8,96E- 05	5,06E- 04	5,50E- 04	3,32E- 05	-5,88E -04
ADPE	kg Sb-	4,20E-	3,31E-	1,06E-	0,00E+	2,51E-	3,49E-	0,00E+	0,00E+	3,88E-	2,86E-	3,67E-	5,93E-	1,36E-	8,08E-	-1,16E
	eq.	02	06	07	00	04	04	00	00	04	04	07	07	06	09	-06
ADPF	МЈ	4,01E+ 02	7,91E+ 00	2,90E- 01	0,00E+ 00	2,47E+ 02	3,53E+ 01	0,00E+ 00	0,00E+ 00	8,80E+ 02	9,94E+ 02	8,31E- 01	1,94E+ 00	2,81E+ 00	5,63E- 02	-2,44 E+00
WDP	m³	3,28E+ 01	3,07E- 02	6,27E- 03	0,00E+ 00	6,32E+ 01	7,73E- 01	0,00E+ 00	0,00E+ 00	1,03E+ 01	7,55E+ 03	9,71E- 03	6,43E- 03	1,53E- 01	2,33E- 03	-9,77E -02
Caption	GWP-total = Global Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terrestrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use															
Disclaimer	1 The resu the indica		environm	ental indi	cator shall	be used v	with care a	as the unc	ertainties	on these	results are	e high or a	as there is	limited ex	perience	with

Table 8: Additional environmental impact indicators

				AD	DITION	AL ENVI	RONME	NTAL II	MPACT:	S PER FI	XTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
PM	Disease Incidence	4,20E- 06	3,36E- 08	1,95E- 09	0,00E+ 00	1,90E- 06	2,64E- 07	0,00E+ 00	0,00E+ 00	7,50E- 07	3,10E- 06	7,08E- 10	9,68E- 09	7,22E- 09	3,87E- 10	-9,44 E-09
IRP	kBq U235 eq	3,46E+ 00	4,41E- 02	1,68E- 03	0,00E+ 00	1,35E+ 00	2,19E- 01	0,00E+ 00	0,00E+ 00	2,41E+ 01	2,07E+ 01	2,28E- 02	1,03E- 02	3,36E- 02	2,88E- 04	-2,45 E-02
ETP-fw	CTUe	1,40E+ 04	6,94E+ 00	6,52E- 01	0,00E+ 00	1,27E+ 03	1,53E+ 02	0,00E+ 00	0,00E+ 00	5,57E+ 02	1,05E+ 03	5,26E- 01	1,58E+ 00	4,93E+ 00	3,03E- 01	-3,47 E+00
НТР-с	CTUh	3,66E- 07	2,92E- 10	1,99E- 11	0,00E+ 00	3,10E- 08	2,99E- 08	0,00E+ 00	0,00E+ 00	1,71E- 08	2,43E- 07	1,62E- 11	5,79E- 11	7,57E- 11	2,71E- 12	-1,14 E-10
HTP-nc	CTUh	2,24E- 05	6,89E- 09	7,39E- 10	0,00E+ 00	7,76E- 07	2,10E- 07	0,00E+ 00	0,00E+ 00	5,49E- 07	3,43E- 06	5,19E- 10	1,61E- 09	3,02E- 09	1,03E- 10	-2,34 E-09
SQP	-	5,97E+ 02	3,86E+ 00	1,58E- 01	0,00E+ 00	8,61E+ 02	1,85E+ 01	0,00E+ 00	0,00E+ 00	1,59E+ 02	2,24E+ 02	1,50E- 01	1,15E+ 00	2,34E- 01	1,19E- 01	-6,95 E-01
Caption		PM = Particulate Matter emissions; IRP = Ionizing radiation — human health; ETP-fw = Eco toxicity — freshwater; HTP-c = Human toxicity — cancer effects; HTP-nc = Human toxicity — non cancer effects; SQP = Soil Quality														
Disclaimers	indicator. ² This impa consider ef	1 The results of this environmental indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator. 2 This impact category deals mainly with the eventual impact of low-dose ionizing radiation on the human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon, and from some construction materials is also not measured by this indicator.														

Table 9: Parameters describing resource use

						RES	OURCE	USE PE	R FIXTU	RE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	СЗ	C4	D
PERE	МЈ	2,02E+ 02	1,68E- 01	-3,76E +00	0,00E+ 00	4,55E+ 02	4,07E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,28E- 02	2,27E+ 00	1,32E- 03	-1,40E +00
PERM	MJ	1,96E- 01	0,00E+ 00	3,77E+ 00	0,00E+ 00											
PERT	MJ	2,02E+ 02	1,68E- 01	5,98E- 03	0,00E+ 00	4,55E+ 02	4,07E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,28E- 02	2,27E+ 00	1,32E- 03	-1,40E +00
PENRE	MJ	4,20E+ 02	8,40E+ 00	-3,16E +00	0,00E+ 00	2,81E+ 02	3,76E+ 01	0,00E+ 00	0,00E+ 00	9,23E+ 02	1,05E+ 03	8,72E- 01	2,06E+ 00	2,99E+ 00	5,98E- 02	-2,59E +00
PENRM	MJ	8,62E+ 00	0,00E+ 00	3,47E+ 00	0,00E+ 00											
PENRT	MJ	4,28E+ 02	8,40E+ 00	3,08E- 01	0,00E+ 00	2,81E+ 02	3,76E+ 01	0,00E+ 00	0,00E+ 00	9,23E+ 02	1,05E+ 03	8,72E- 01	2,06E+ 00	2,99E+ 00	5,98E- 02	-2,59E +00
SM	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
RSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
NRSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
FW	m³	3,25E+ 01	3,06E- 02	6,25E- 03	0,00E+ 00	6,12E+ 01	7,61E- 01	0,00E+ 00	0,00E+ 00	1,01E+ 01	7,20E+ 03	9,53E- 03	6,44E- 03	1,52E- 01	2,33E- 03	-9,67E- 02
Caption	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of freshwater															

Table 10: End-of-life (waste categories and output flows)

	WASTE CATEGORIES AND OUTPUT FLOWS PER FIXTURE															
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	СЗ	C4	D
HWD	kg	1,17E- 02	2,19E- 05	8,34E- 07	0,00E+ 00	3,79E- 04	1,43E- 04	0,00E+ 00	0,00E+ 00	6,69E- 04	1,75E- 03	6,32E- 07	5,20E- 06	7,89E- 07	1,19E- 07	-1,93E -06
NHWD	kg	1,18E+ 01	2,59E- 01	6,65E- 02	0,00E+ 00	3,57E+ 00	1,86E+ 00	0,00E+ 00	0,00E+ 00	3,07E+ 00	1,30E+ 01	2,90E- 03	8,23E- 02	1,06E- 02	2,55E- 01	-4,11E -02
RWD	kg	1,29E- 03	5,22E- 05	1,96E- 06	0,00E+ 00	8,70E- 04	1,51E- 04	0,00E+ 00	0,00E+ 00	6,47E- 03	5,94E- 03	6,11E- 06	1,30E- 05	7,74E- 06	3,32E- 07	-8,35E -06
CRU	kg	0,00E+ 00	0,00E +00													
MFR	kg	2,57E+ 00	0,00E+ 00	1,85E- 01	0,00E+ 00	1,94E+ 00	0,00E+ 00	0,00E +00								
MER	kg	0,00E+ 00	0,00E +00													
EEE	MJ	2,99E- 03	0,00E+ 00	2,10E- 01	0,00E+ 00	2,32E- 01	0,00E+ 00	0,00E +00								
EET	MJ	2,87E- 02	0,00E+ 00	5,59E+ 00	0,00E+ 00	2,28E+ 00	0,00E+ 00	0,00E +00								
Caption	HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy, EET = exported thermal energy										MFR =					

Table 11: Biogenic carbon content

BIOGENIC CARBON CONTENT PER FIXTURE											
Parameter	Unit	At the factory gate									
Biogenic carbon content in a product	kg C	0									
Biogenic carbon content in accompanying packaging	kg C	0,1178									
Note	1 kg biogenic carb	on is equivalent to 44/12 kg of CO ₂									

Group 2: Natural brass is represented by HV1E2-19

Table 12: Environmental impact indicators

					ENV	IRONM	ENTAL I	MPACT	S PER F	IXTURE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	СЗ	C4	D
GWP- total	kg CO ₂ - eq.	3,02E+ 01	9,53E- 01	2,17E- 01	0,00E+ 00	7,07E+ 00	3,89E+ 00	0,00E+ 00	0,00E+ 00	4,27E+ 01	5,91E+ 01	4,04E- 02	1,32E- 01	5,21E- 01	5,25E- 02	-2,43E -01
GWP-fossil	kg CO ₂ - eq.	3,00E+ 01	9,51E- 01	1,14E- 01	0,00E+ 00	1,40E+ 01	3,85E+ 00	0,00E+ 00	0,00E+ 00	4,13E+ 01	5,78E+ 01	3,90E- 02	1,31E- 01	5,20E- 01	5,32E- 03	-2,03E -01
GWP- biogenic	kg CO ₂ - eq.	1,11E- 01	1,03E- 03	1,03E- 01	0,00E+ 00	-1,81E +01	3,14E- 02	0,00E+ 00	0,00E+ 00	1,33E+ 00	1,20E+ 00	1,26E- 03	1,26E- 04	1,23E- 03	4,72E- 02	-4,01E -02
GWP- luluc	kg CO ₂ - eq.	5,82E- 02	5,68E- 04	8,23E- 06	0,00E+ 00	1,12E+ 01	2,84E- 03	0,00E+ 00	0,00E+ 00	9,76E- 02	1,00E- 01	9,22E- 05	6,19E- 05	4,43E- 04	2,75E- 06	-3,05E -04
ODP	kg CFC 11 -eq.	1,78E- 06	2,07E- 07	4,42E- 09	0,00E+ 00	2,79E- 06	4,96E- 07	0,00E+ 00	0,00E+ 00	2,08E- 06	3,86E- 06	1,97E- 09	2,95E- 08	4,16E- 09	6,98E- 10	-9,87E -09
AP	mol H+- eq.	1,65E+ 00	3,71E- 03	1,26E- 04	0,00E+ 00	1,39E- 01	2,92E- 02	0,00E+ 00	0,00E+ 00	2,35E- 01	3,22E- 01	2,22E- 04	5,23E- 04	1,16E- 03	2,26E- 05	-9,34E -04
EP- freshwater	kg P-eq.	P-eq. 1,31E- 8,84E- 2,11E- 0,00E+ 4,95E- 1,69E- 0,00E+ 0,00E+ 4,16E- 4,17E- 3,93E- 9,87E- 1,14E- 1,02E8,00E 05 06 00 03 03 00 00 02 02 05 06 04 06 -05														
EP- marine	kg N-eq.	2-eq. 01 05 06 00 03 03 00 00 02 02 05 06 04 06 -05														
EP- terrestrial	mol N- eq.	1,22E+ 00	1,11E- 02	4,77E- 04	0,00E+ 00	4,44E- 01	4,85E- 02	0,00E+ 00	0,00E+ 00	3,45E- 01	5,90E- 01	3,26E- 04	1,66E- 03	2,11E- 03	7,56E- 05	-2,05E -03
РОСР	kg NMVOC- eq.	3,39E- 01	3,46E- 03	1,54E- 04	0,00E+ 00	7,57E- 02	1,49E- 02	0,00E+ 00	0,00E+ 00	9,49E- 02	1,92E- 01	8,97E- 05	5,11E- 04	5,50E- 04	3,31E- 05	-5,89E -04
ADPE	kg Sb- eq.	4,07E- 02	5,91E- 06	1,05E- 07	0,00E+ 00	2,51E- 04	3,63E- 04	0,00E+ 00	0,00E+ 00	3,88E- 04	2,86E- 04	3,67E- 07	5,99E- 07	1,36E- 06	8,08E- 09	-1,16E -06
ADPF	MJ	3,93E+ 02	1,41E+ 01	2,88E- 01	0,00E+ 00	2,47E+ 02	5,09E+ 01	0,00E+ 00	0,00E+ 00	8,80E+ 02	9,94E+ 02	8,32E- 01	1,96E+ 00	2,82E+ 00	5,58E- 02	-2,44 E+00
WDP	m³	3,19E+ 01	5,49E- 02	6,32E- 03	0,00E+ 00	6,32E+ 01	9,14E- 01	0,00E+ 00	0,00E+ 00	1,03E+ 01	7,55E+ 03	9,72E- 03	6,50E- 03	1,53E- 01	2,30E- 03	-9,76E -02
Caption	GWP-tota GWP-lulud EP-freshw Photoched use	c = Global ater = Eut	Warming rophication	Potential on – aquat	- land use	and land ater; EP-m	use chang narine = E	ge; ODP = utrophica	Ozone De tion – aqu	pletion; A atic marin	.P = Acidif ne; EP-terr	ication; estrial = E	utrophica	tion – ter	restrial; P	OCP =
Disclaimer	1 The resu the indica		environm	ental indic	ator shall	be used v	with care a	as the unc	ertainties	on these	results are	e high or a	as there is	limited ex	xperience	with

Table 13: Additional environmental impact indicators

				AD	DITION	AL ENVI	RONME	NTAL II	MPACT	S PER FI	XTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
PM	Disease Incidence	4,07E- 06	6,01E- 08	1,94E- 09	0,00E+ 00	1,90E- 06	3,38E- 07	0,00E+ 00	0,00E+ 00	7,50E- 07	3,10E- 06	7,09E- 10	9,78E- 09	7,23E- 09	3,83E- 10	-9,45 E-09
IRP	kBq U235 eq	3,36E+ 00	7,89E- 02	1,67E- 03	0,00E+ 00	1,35E+ 00	3,12E- 01	0,00E+ 00	0,00E+ 00	2,41E+ 01	2,07E+ 01	2,28E- 02	1,04E- 02	3,36E- 02	2,85E- 04	-2,45 E-02
ETP-fw	CTUe	04 01 01 00 03 02 00 00 02 03 01 00 00 01 E+00 11b 3,49E- 5,22E- 1,98E- 0,00E+ 3,10E- 3,64E- 0,00E+ 0,00E+ 1,71E- 2,43E- 1,62E- 5,85E- 7,61E- 2,73E1,14														
НТР-с	CTUh	04 01 01 00 03 02 00 00 02 03 01 00 00 01 E+00 Uh 3,49E- 07 10 11 00 08 08 08 00 00 08 07 11 11 11 12 E-10														
HTP-nc	CTUh	2,17E- 05	1,23E- 08	7,40E- 10	0,00E+ 00	7,76E- 07	2,28E- 07	0,00E+ 00	0,00E+ 00	5,49E- 07	3,43E- 06	5,19E- 10	1,62E- 09	3,03E- 09	1,03E- 10	-2,34 E-09
SQP	-	5,80E+ 02	6,91E+ 00	1,56E- 01	0,00E+ 00	8,61E+ 02	2,61E+ 01	0,00E+ 00	0,00E+ 00	1,59E+ 02	2,24E+ 02	1,50E- 01	1,16E+ 00	2,34E- 01	1,19E- 01	-6,98 E-01
Caption	PM = Parti HTP-nc = H				_			health; E1	P-fw = Ec	o toxicity	– freshwa	ter; HTP-	c = Humar	n toxicity -	- cancer e	ffects;
Disclaimers	1 The resul- indicator. 2 This impa consider e- ionizing ra	ct categor	ry deals m to possib	ainly with le nuclear	the even	tual impa	ct of low-	dose ioniz osure nor	ing radiat due to rac	ion on the	human h	ealth of t	he nuclea idergroun	r fuel cycle	e. It does i	not

Table 14: Parameters describing resource use

						RES	OURCE	USE PE	R FIXTU	RE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
PERE	MJ	2,11E+ 02	3,00E- 01	-3,75E +00	0,00E+ 00	4,55E+ 02	5,04E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,31E- 02	2,28E+ 00	1,32E- 03	-1,39E +00
PERM	MJ	1,96E- 01	0,00E+ 00	3,75E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
PERT	MJ	2,11E+ 02	3,00E- 01	5,89E- 03	0,00E+ 00	4,55E+ 02	5,04E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,31E- 02	2,28E+ 00	1,32E- 03	-1,39E +00
PENRE	MJ	4,11E+ 1,50E+ -3,25E 0,00E+ 2,81E+ 5,42E+ 0,00E+ 0,00E+ 0,00E+ 1,05E+ 8,72E- 2,08E+ 3,00E+ 5,93E2,598 02 01 +00 00 02 01 00 00 02 03 01 00 00 02 +00 8,67E+ 0,00E+ 3,56E+ 0,00E+ 0														
PENRM	MJ	02 01 +00 00 02 01 00 00 02 01 00 00 02 03 01 00 00 02 +00 8,67E+ 0,00E+ 3,56E+ 0,00E+ 0,00E														
PENRT	MJ	00 00 00 00 00 00 00 00 00 00 00 00 00														
SM	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
RSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
NRSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
FW	m³	3,16E+ 01	5,47E- 02	6,29E- 03	0,00E+ 00	6,12E+ 01	9,00E- 01	0,00E+ 00	0,00E+ 00	1,01E+ 01	7,20E+ 03	9,54E- 03	6,51E- 03	1,52E- 01	2,30E- 03	-9,66E- 02
Caption	resource renewak Total use	es used as ole primar e of non-re	raw mate y energy r enewable	imary ener rials; PERT esources u primary e FW = Net	= Total usused as ras nergy reso	se of rene w materia ources; SM	wable prii ls; PENRIV	mary ener	gy resoure non-renev	ces; PENR wable prin	E = Use of nary enerខ្	non-rene gy resourc	wable prir es used as	nary ener	gy excludi erials; PEN	ng non- RT =

Table 15: End-of-life (waste categories and output flows)

				WAS	STE CAT	EGORIE	S AND	ОИТРИ	T FLOW	S PER F	IXTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
HWD	kg	1,14E- 02	3,91E- 05	8,29E- 07	0,00E+ 00	3,79E- 04	1,80E- 04	0,00E+ 00	0,00E+ 00	6,69E- 04	1,75E- 03	6,33E- 07	5,26E- 06	7,89E- 07	1,18E- 07	-1,94E -06
NHWD	kg	1,14E+ 01	4,63E- 01	6,69E- 02	0,00E+ 00	3,57E+ 00	2,52E+ 00	0,00E+ 00	0,00E+ 00	3,07E+ 00	1,30E+ 01	2,90E- 03	8,32E- 02	1,06E- 02	2,49E- 01	-4,14E -02
RWD	kg	1,26E- 03	9,33E- 05	1,94E- 06	0,00E+ 00	8,70E- 04	2,42E- 04	0,00E+ 00	0,00E+ 00	6,47E- 03	5,94E- 03	6,12E- 06	1,31E- 05	7,75E- 06	3,28E- 07	-8,36E -06
CRU	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
MFR	kg	2,58E+ 00	0,00E+ 00	1,84E- 01	0,00E+ 00	1,96E+ 00	0,00E+ 00	0,00E +00								
MER	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
EEE	MJ	2,99E- 03	0,00E+ 00	2,09E- 01	0,00E+ 00	2,32E- 01	0,00E+ 00	0,00E +00								
EET	MJ	2,87E- 02	0,00E+ 00	5,58E+ 00	0,00E+ 00	2,28E+ 00	0,00E+ 00	0,00E +00								
Caption	1	Hazardous Is for recy											RU = Com	ponents fo	or re-use;	MFR =

Table 16: Biogenic carbon content

BIOGENIC CARBON	CONTENT PER FIXTURE	
Parameter	Unit	At the factory gate
Biogenic carbon content in a product	kg C	0
Biogenic carbon content in accompanying packaging	kg C	0,1173
Note	1 kg biogenic carb	on is equivalent to 44/12 kg of CO ₂

Group 3: Stainless steel is represented by HV1E-40

Table 17: Environmental impact indicators

					ENV	IRONM	ENTAL I	MPACT	S PER F	IXTURE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	СЗ	C4	D
GWP- total	kg CO ₂ - eq.	2,93E+ 01	5,13E- 01	2,14E- 01	0,00E+ 00	7,07E+ 00	2,72E+ 00	0,00E+ 00	0,00E+ 00	4,27E+ 01	5,91E+ 01	4,03E- 02	1,26E- 01	5,20E- 01	5,21E- 02	-2,52E -01
GWP-fossil	kg CO ₂ - eq.	2,91E+ 01	5,12E- 01	1,11E- 01	0,00E+ 00	1,40E+ 01	2,69E+ 00	0,00E+ 00	0,00E+ 00	4,13E+ 01	5,78E+ 01	3,90E- 02	1,25E- 01	5,18E- 01	4,96E- 03	-2,11E -01
GWP- biogenic	kg CO ₂ - eq.	1,27E- 01	5,54E- 04	1,03E- 01	0,00E+ 00	-1,81 E+01	2,80E- 02	0,00E+ 00	0,00E+ 00	1,33E+ 00	1,20E+ 00	1,26E- 03	1,21E- 04	1,23E- 03	4,72E- 02	-3,98E -02
GWP- luluc	kg CO ₂ - eq.	4,28E- 02	3,06E- 04	8,24E- 06	0,00E+ 00	1,12E+ 01	2,06E- 03	0,00E+ 00	0,00E+ 00	9,76E- 02	1,00E- 01	9,21E- 05	5,90E- 05	4,43E- 04	2,68E- 06	-3,10E -04
ODP	kg CFC 11 -eq.	1,61E- 06	1,12E- 07	4,40E- 09	0,00E+ 00	2,79E- 06	2,92E- 07	0,00E+ 00	0,00E+ 00	2,08E- 06	3,86E- 06	1,97E- 09	2,82E- 08	4,31E- 09	6,71E- 10	-1,19E -08
AP	mol H ⁺⁻ eq.	8,94E- 01	1,99E- 03	1,25E- 04	0,00E+ 00	1,39E- 01	2,37E- 02	0,00E+ 00	0,00E+ 00	2,35E- 01	3,22E- 01	2,22E- 04	4,99E- 04	1,16E- 03	2,19E- 05	-9,88E -04
EP- freshwater	kg P-eq.	P-eq. 7,01E- 4,76E- 2,11E- 0,00E+ 4,95E- 1,47E- 0,00E+ 0,00E+ 4,16E- 4,17E- 3,92E- 9,42E- 1,14E- 1,01E- 8,08E 02 05 06 00 03 03 00 00 02 02 05 06 04 06 -05														
EP- marine	kg N-eq.	P-eq. 02 05 06 00 03 03 00 00 02 02 05 06 04 06 -05														
EP- terrestrial	mol N- eq.	7,50E- 01	5,96E- 03	4,74E- 04	0,00E+ 00	4,44E- 01	3,50E- 02	0,00E+ 00	0,00E+ 00	3,45E- 01	5,90E- 01	3,26E- 04	1,59E- 03	2,12E- 03	7,31E- 05	-2,27E -03
РОСР	kg NMVOC- eq.	2,15E- 01	1,86E- 03	1,53E- 04	0,00E+ 00	7,57E- 02	1,07E- 02	0,00E+ 00	0,00E+ 00	9,49E- 02	1,92E- 01	8,96E- 05	4,87E- 04	5,54E- 04	3,23E- 05	-6,49E -04
ADPE	kg Sb- eq.	2,07E- 02	3,18E- 06	1,05E- 07	0,00E+ 00	2,51E- 04	3,37E- 04	0,00E+ 00	0,00E+ 00	3,88E- 04	2,86E- 04	3,66E- 07	5,72E- 07	1,36E- 06	7,88E- 09	-1,19E -06
ADPF	MJ	3,74E+ 02	7,61E+ 00	2,87E- 01	0,00E+ 00	2,47E+ 02	3,45E+ 01	0,00E+ 00	0,00E+ 00	8,80E+ 02	9,94E+ 02	8,31E- 01	1,87E+ 00	2,82E+ 00	5,38E- 02	-2,58 E+00
WDP	m³	2,14E+ 01	2,95E- 02	6,22E- 03	0,00E+ 00	6,32E+ 01	7,59E- 01	0,00E+ 00	0,00E+ 00	1,03E+ 01	7,55E+ 03	9,71E- 03	6,20E- 03	1,53E- 01	2,22E- 03	-9,82E -02
Caption	GWP-tota GWP-lulud EP-freshw Photoched use	c = Global ater = Eut	Warming rophication	Potential on – aquat	- land use tic freshw	and land ater; EP-m	use chanរ narine = E	ge; ODP = utrophica	Ozone De tion – aqu	pletion; A atic marin	P = Acidif ne; EP-terr	ication; estrial = E	utrophica	tion – ter	restrial; P	OCP =
Disclaimer	1 The resu the indica		environm	ental indic	cator shall	be used v	with care a	as the unc	ertainties	on these	results are	e high or a	as there is	limited ex	xperience	with

Table 18: Additional environmental impact indicators

				AD	DITION	AL ENVI	RONME	NTAL I	MPACT:	S PER FI	XTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
PM	Disease Incidence	3,04E- 06	3,23E- 08	1,93E- 09	0,00E+ 00	1,90E- 06	2,58E- 07	0,00E+ 00	0,00E+ 00	7,50E- 07	3,10E- 06	7,08E- 10	9,34E- 09	7,29E- 09	3,70E- 10	-1,04 E-08
IRP	kBq U235 eq	2,86E+ 00	4,24E- 02	1,67E- 03	0,00E+ 00	1,35E+ 00	2,15E- 01	0,00E+ 00	0,00E+ 00	2,41E+ 01	2,07E+ 01	2,27E- 02	9,94E- 03	3,37E- 02	2,77E- 04	-2,53 E-02
ETP-fw	CTUe	03 00 01 00 03 02 00 00 02 03 01 00 00 01 E+00 1b 4,41E- 2,81E- 1,98E- 0,00E+ 3,10E- 2,98E- 0,00E+ 0,00E+ 1,71E- 2,43E- 1,62E- 5,58E- 7,60E- 2,67E1,18														
НТР-с	CTUh	03 00 01 00 03 02 00 00 02 03 01 00 00 01 E+00 4,41E- 2,81E- 1,98E- 1,00E+ 3,10E- 2,98E- 0,00E+ 0,00E+ 0,00E+ 1,71E- 2,43E- 1,62E- 5,58E- 7,60E- 2,67E1,18 07 10 11 00 08 08 00 00 00 08 07 11 11 11 12 E-10														
HTP-nc	CTUh	1,10E- 05	6,63E- 09	7,32E- 10	0,00E+ 00	7,76E- 07	2,03E- 07	0,00E+ 00	0,00E+ 00	5,49E- 07	3,43E- 06	5,19E- 10	1,55E- 09	3,03E- 09	1,01E- 10	-2,46 E-09
SQP	-	3,75E+ 02	3,72E+ 00	1,56E- 01	0,00E+ 00	8,61E+ 02	1,81E+ 01	0,00E+ 00	0,00E+ 00	1,59E+ 02	2,24E+ 02	1,50E- 01	1,11E+ 00	2,42E- 01	1,14E- 01	-8,14 E-01
Caption	PM = Parti HTP-nc = H				_			health; E1	P-fw = Ec	o toxicity	– freshwa	ter; HTP-	c = Humar	toxicity -	- cancer e	ffects;
Disclaimers	1 The resultindicator. 2 This impaconsider elionizing radi	ct categor	ry deals m to possib	ainly with le nuclear	the even	tual impa	ct of low-	dose ioniz osure nor	ing radiat due to rac	ion on the	human h	ealth of t	he nuclea idergroun	r fuel cycle	e. It does i	not

Table 19: Parameters describing resource use

						RES	OURCE	USE PE	R FIXTU	RE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
PERE	МЈ	2,50E+ 02	1,62E- 01	-3,76E +00	0,00E+ 00	4,55E+ 02	4,03E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,16E- 02	2,27E+ 00	1,30E- 03	-1,40E +00
PERM	MJ	1,96E- 01	0,00E+ 00	3,77E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
PERT	MJ	2,50E+ 02	1,62E- 01	5,92E- 03	0,00E+ 00	4,55E+ 02	4,03E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,16E- 02	2,27E+ 00	1,30E- 03	-1,40E +00
PENRE	MJ	02 00 +00 00 02 01 00 00 02 03 01 00 00 02 +00 8,62E+ 0,00E+ 3,47E+ 0,00E+ 0,0														
PENRM	MJ	8,62E+ 0,00E+ 3,47E+ 0,00E+ 0,														
PENRT	MJ	10 00 00 00 00 00 00 00 00 00 00 00 00 0														
SM	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
RSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
NRSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
FW	m³	2,12E+ 01	2,94E- 02	6,20E- 03	0,00E+ 00	6,12E+ 01	7,46E- 01	0,00E+ 00	0,00E+ 00	1,01E+ 01	7,20E+ 03	9,53E- 03	6,21E- 03	1,52E- 01	2,21E- 03	-9,71E- 02
Caption	resource renewak Total use	Jse of rene es used as ble primary e of non-re ble second	raw mate y energy r enewable	rials; PERT esources u primary e	= Total usused as ras nergy reso	se of rene w materia ources; SM	wable prii ls; PENRIV	mary ener	gy resoure non-renev	ces; PENR wable prin	E = Use of nary enerខ្	non-rene gy resourc	wable prir es used as	nary ener	gy excludi erials; PEN	ng non- IRT =

Table 20: End-of-life (waste categories and output flows)

				WAS	STE CAT	EGORIE	S AND	OUTPU ⁻	T FLOW	S PER F	IXTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
HWD	kg	5,81E- 03	2,10E- 05	8,25E- 07	0,00E+ 00	3,79E- 04	1,38E- 04	0,00E+ 00	0,00E+ 00	6,69E- 04	1,75E- 03	6,32E- 07	5,01E- 06	8,14E- 07	1,15E- 07	-2,29E -06
NHWD	kg	1,80E+ 01	2,49E- 01	6,58E- 02	0,00E+ 00	3,57E+ 00	1,81E+ 00	0,00E+ 00	0,00E+ 00	3,07E+ 00	1,30E+ 01	2,90E- 03	7,94E- 02	1,12E- 02	2,38E- 01	-5,01E -02
RWD	kg	1,07E- 03	5,02E- 05	1,94E- 06	0,00E+ 00	8,70E- 04	1,47E- 04	0,00E+ 00	0,00E+ 00	6,47E- 03	5,94E- 03	6,11E- 06	1,25E- 05	7,81E- 06	3,15E- 07	-9,30E -06
CRU	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
MFR	kg	2,57E+ 00	0,00E+ 00	1,85E- 01	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	2,00E+ 00	0,00E+ 00	0,00E +00
MER	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
EEE	MJ	2,99E- 03	0,00E+ 00	2,10E- 01	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	2,32E- 01	0,00E+ 00	0,00E +00
EET	MJ	2,87E- 02	0,00E+ 00	5,59E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	2,28E+ 00	0,00E+ 00	0,00E +00
Caption		Hazardous Is for recy											RU = Com	ponents fo	or re-use;	MFR =

Table 21: Biogenic carbon content

BIOGENIC CARBON	CONTENT PER FIXTURE	
Parameter	Unit	At the factory gate
Biogenic carbon content in a product	kg C	0
Biogenic carbon content in accompanying packaging	kg C	0,1178
Note	1 kg biogenic carb	on is equivalent to 44/12 kg of CO ₂

Group 4: Colors is represented by HV1E-27 - Matt Black

Table 22: Environmental impact indicators

					ENV	IRONM	ENTAL I	MPACT	S PER F	IXTURE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	СЗ	C4	D
GWP- total	kg CO ₂ - eq.	3,13E+ 01	5,52E- 01	2,21E- 01	0,00E+ 00	7,07E+ 00	2,83E+ 00	0,00E+ 00	0,00E+ 00	4,27E+ 01	5,91E+ 01	4,04E- 02	1,32E- 01	5,21E- 01	5,23E- 02	-2,44E -01
GWP-fossil	kg CO ₂ - eq.	3,11E+ 01	5,51E- 01	1,13E- 01	0,00E+ 00	1,40E+ 01	2,80E+ 00	0,00E+ 00	0,00E+ 00	4,13E+ 01	5,78E+ 01	3,90E- 02	1,32E- 01	5,19E- 01	5,11E- 03	-2,03E -01
GWP- biogenic	kg CO ₂ - eq.	1,11E- 01	5,96E- 04	1,08E- 01	0,00E+ 00	-1,81E +01	2,83E- 02	0,00E+ 00	0,00E+ 00	1,33E+ 00	1,20E+ 00	1,26E- 03	1,26E- 04	1,23E- 03	4,72E- 02	-4,03E -02
GWP- luluc	kg CO ₂ - eq.	6,00E- 02	3,29E- 04	8,69E- 06	0,00E+ 00	1,12E+ 01	2,14E- 03	0,00E+ 00	0,00E+ 00	9,76E- 02	1,00E- 01	9,22E- 05	6,19E- 05	4,43E- 04	2,73E- 06	-3,06E -04
ODP	kg CFC 11 -eq.	1,85E- 06	1,20E- 07	4,60E- 09	0,00E+ 00	2,79E- 06	3,10E- 07	0,00E+ 00	0,00E+ 00	2,08E- 06	3,86E- 06	1,97E- 09	2,96E- 08	4,15E- 09	6,93E- 10	-9,96E -09
AP	mol H+- eq.	00 03 04 00 01 02 00 00 01 01 01 04 04 03 05 -04 Decription 1,34E- 5,12E- 2,22E- 0,00E+ 4,95E- 1,55E- 0,00E+ 0,00E+ 4,16E- 4,17E- 3,93E- 9,88E- 1,14E- 1,02E8,01E														
EP- freshwater	kg P-eq.	P-eq. 1,34E- 5,12E- 0,00E+ 4,95E- 0,00E+ 0,00E+ 0,00E+ 4,16E- 4,17E- 3,93E- 9,88E- 1,14E- 1,02E8,01E 05 06 00 03 03 00 00 02 02 05 06 04 06 -05														
EP- marine	kg N-eq.	9.38F, 5.88F, 9.31F, 0.00F, 1.11F, 3.28F, 0.00F, 0.00F, 3.27F, 6.21F, 3.70F, 1.52F, 2.11F, 9.85F, 2.216F														
EP- terrestrial	mol N- eq.	1,25E+ 00	6,41E- 03	4,94E- 04	0,00E+ 00	4,44E- 01	3,67E- 02	0,00E+ 00	0,00E+ 00	3,45E- 01	5,90E- 01	3,27E- 04	1,66E- 03	2,10E- 03	7,51E- 05	-2,06E -03
РОСР	kg NMVOC- eq.	3,49E- 01	2,00E- 03	1,60E- 04	0,00E+ 00	7,57E- 02	1,12E- 02	0,00E+ 00	0,00E+ 00	9,49E- 02	1,92E- 01	8,97E- 05	5,11E- 04	5,50E- 04	3,29E- 05	-5,93E -04
ADPE	kg Sb- eq.	4,17E- 02	3,42E- 06	1,10E- 07	0,00E+ 00	2,51E- 04	3,60E- 04	0,00E+ 00	0,00E+ 00	3,88E- 04	2,86E- 04	3,67E- 07	5,99E- 07	1,36E- 06	8,02E- 09	-1,16E -06
ADPF	MJ	4,08E+ 02	8,19E+ 00	3,01E- 01	0,00E+ 00	2,47E+ 02	3,61E+ 01	0,00E+ 00	0,00E+ 00	8,80E+ 02	9,94E+ 02	8,32E- 01	1,96E+ 00	2,82E+ 00	5,54E- 02	-2,44 E+00
WDP	m³	3,30E+ 01	3,18E- 02	6,39E- 03	0,00E+ 00	6,32E+ 01	7,86E- 01	0,00E+ 00	0,00E+ 00	1,03E+ 01	7,55E+ 03	9,72E- 03	6,50E- 03	1,53E- 01	2,29E- 03	-9,76E -02
Caption	GWP-tota GWP-lulud EP-freshw Photoched use	c = Global ater = Eut	Warming rophication	Potential on – aquat	- land use tic freshw	and land ater; EP-m	use chang narine = E	ge; ODP = utrophica	Ozone De tion – aqu	pletion; A atic marin	.P = Acidif ne; EP-terr	ication; estrial = E	utrophica	tion – ter	restrial; P	OCP =
Disclaimer	1 The resu the indica		environm	ental indic	cator shall	be used v	with care a	as the unc	ertainties	on these	results are	e high or a	as there is	limited ex	xperience	with

Table 23: Additional environmental impact indicators

				AD	DITION	AL ENVI	RONME	NTAL II	MPACT	S PER FI	XTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	СЗ	C4	D
PM	Disease Incidence	4,20E- 06	3,48E- 08	2,03E- 09	0,00E+ 00	1,90E- 06	2,70E- 07	0,00E+ 00	0,00E+ 00	7,50E- 07	3,10E- 06	7,09E- 10	9,79E- 09	7,23E- 09	3,81E- 10	-9,50 E-09
IRP	kBq U235 eq	3,52E+ 00	4,57E- 02	1,75E- 03	0,00E+ 00	1,35E+ 00	2,23E- 01	0,00E+ 00	0,00E+ 00	2,41E+ 01	2,07E+ 01	2,28E- 02	1,04E- 02	3,36E- 02	2,84E- 04	-2,45 E-02
ETP-fw	CTUe	04 00 01 00 03 02 00 00 02 03 01 00 00 01 E+00 11b 3,65E- 3,02E- 2,06E- 0,00E+ 3,10E- 3,00E- 0,00E+ 0,00E+ 1,71E- 2,43E- 1,62E- 5,85E- 7,61E- 2,71E1,14														
НТР-с	CTUh	04 00 01 00 03 02 00 00 02 03 01 00 00 01 E+00 TUh 07 10 11 00 08 08 08 00 00 00 02 03 01 00 00 01 E+00 08 08 08 00 00 08 07 11 11 11 12 E-10														
HTP-nc	CTUh	2,23E- 05	7,13E- 09	7,57E- 10	0,00E+ 00	7,76E- 07	2,16E- 07	0,00E+ 00	0,00E+ 00	5,49E- 07	3,43E- 06	5,19E- 10	1,62E- 09	3,03E- 09	1,02E- 10	-2,34 E-09
SQP	-	5,98E+ 02	4,00E+ 00	1,64E- 01	0,00E+ 00	8,61E+ 02	1,90E+ 01	0,00E+ 00	0,00E+ 00	1,59E+ 02	2,24E+ 02	1,50E- 01	1,16E+ 00	2,34E- 01	1,18E- 01	-7,00 E-01
Caption	PM = Partio				-			health; E1	P-fw = Ec	o toxicity	– freshwa	ter; HTP-	c = Humar	toxicity -	- cancer e	ffects;
Disclaimers	1 The result indicator. 2 This impa consider et ionizing rad	ct categoi ffects due	ry deals m to possib	ainly with le nuclear	the even	tual impa	ct of low-	dose ioniz osure nor	ing radiat due to rac	ion on the	human h vaste disp	ealth of t	he nuclea dergroun	r fuel cycle	e. It does i	not

Table 24: Parameters describing resource use

						RES	OURCE	USE PE	R FIXTU	RE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
PERE	MJ	2,06E+ 02	1,74E- 01	-3,92E +00	0,00E+ 00	4,55E+ 02	4,10E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,32E- 02	2,27E+ 00	1,31E- 03	-1,39E +00
PERM	MJ	1,96E- 01	0,00E+ 00	3,93E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
PERT	MJ 02 01 03 00 02 00 00 00 02 02 01 02 00 03 +0 MJ 4,27E+ 8,69E+ -3,20E 0,00E+ 2,81E+ 3,85E+ 0,00E+ 0,00E+ 9,23E+ 1,05E+ 8,73E- 2,08E+ 2,99E+ 5,89E2,6															-1,39E +00
PENRE	MJ	MJ 02 01 03 00 02 00 00 00 02 02 01 02 00 03 +0 MJ 4,27E+ 8,69E+ -3,20E 0,00E+ 2,81E+ 3,85E+ 0,00E+ 0,00E+ 0,00E+ 0,00E+ 1,05E+ 8,73E- 2,08E+ 2,99E+ 5,89E2,6 02 00 +00 00 02 01 00 00 02 +0														
PENRM	MJ 02 00 +00 00 02 01 00 00 02 03 01 00 00 02 +00 00 02 +00 00 00 02 03 01 00 00 02 +00 00 00 00 00 00 00 00 00 00 00 00 00															0,00E+ 00
PENRT	MJ	4,35E+ 02	8,69E+ 00	3,20E- 01	0,00E+ 00	2,81E+ 02	3,85E+ 01	0,00E+ 00	0,00E+ 00	9,23E+ 02	1,05E+ 03	8,73E- 01	2,08E+ 00	2,99E+ 00	5,89E- 02	-2,60E +00
SM	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
RSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
NRSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
FW	m³	3,27E+ 01	3,17E- 02	6,36E- 03	0,00E+ 00	6,12E+ 01	7,73E- 01	0,00E+ 00	0,00E+ 00	1,01E+ 01	7,20E+ 03	9,54E- 03	6,51E- 03	1,52E- 01	2,28E- 03	-9,66E- 02
Caption	resource renewak Total use	Jse of rene es used as ble primar e of non-re ble second	raw mate y energy r enewable	rials; PERT esources (primary e	= Total usused as ras nergy reso	se of rene w materia ources; SM	wable prii ls; PENRIV	mary ener	gy resoure non-renev	ces; PENR wable prin	E = Use of nary enerខ្	non-rene gy resourc	wable prir es used as	nary ener	gy excludi erials; PEN	ng non- RT =

Table 25: End-of-life (waste categories and output flows)

				WAS	STE CAT	EGORIE	S AND	ОИТРИ	T FLOW	S PER F	IXTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
HWD	kg	1,17E- 02	2,26E- 05	8,64E- 07	0,00E+ 00	3,79E- 04	1,48E- 04	0,00E+ 00	0,00E+ 00	6,69E- 04	1,75E- 03	6,33E- 07	5,26E- 06	7,88E- 07	1,17E- 07	-1,96E -06
NHWD	kg	1,20E+ 01	2,68E- 01	6,82E- 02	0,00E+ 00	3,57E+ 00	1,86E+ 00	0,00E+ 00	0,00E+ 00	3,07E+ 00	1,30E+ 01	2,91E- 03	8,32E- 02	1,06E- 02	2,48E- 01	-4,15E -02
RWD	kg															-8,41E -06
CRU	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
MFR	kg	2,58E+ 00	0,00E+ 00	1,84E- 01	0,00E+ 00	2,01E+ 00	0,00E+ 00	0,00E +00								
MER	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
EEE	MJ	2,99E- 03	0,00E+ 00	2,09E- 01	0,00E+ 00	2,32E- 01	0,00E+ 00	0,00E +00								
EET	MJ	2,87E- 02	0,00E+ 00	5,58E+ 00	0,00E+ 00	2,28E+ 00	0,00E+ 00	0,00E +00								
Caption	l	Hazardous Is for recy											RU = Com	ponents fo	or re-use;	MFR =

Table 26: Biogenic carbon content

BIOGENIC CARBON	CONTENT PER FIXTURE	
Parameter	Unit	At the factory gate
Biogenic carbon content in a product	kg C	0
Biogenic carbon content in accompanying packaging	kg C	0,1173
Note	1 kg biogenic carb	on is equivalent to 44/12 kg of CO ₂

Group 5: Exclusive color (PVD on Brass) is represented by HV1E-60 - Black

Table 27: Environmental impact indicators

					ENV	IRONM	ENTAL I	MPACT	S PER F	IXTURE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
GWP- total	kg CO ₂ - eq.	3,03E+ 01	5,48E- 01	2,23E- 01	0,00E+ 00	7,07E+ 00	3,09E+ 00	0,00E+ 00	0,00E+ 00	4,27E+ 01	5,91E+ 01	4,03E- 02	1,35E- 01	5,21E- 01	5,95E- 02	-2,44E -01
GWP-fossil	kg CO ₂ - eq.	3,02E+ 01	5,47E- 01	1,17E- 01	0,00E+ 00	1,40E+ 01	3,06E+ 00	0,00E+ 00	0,00E+ 00	4,13E+ 01	5,78E+ 01	3,90E- 02	1,35E- 01	5,19E- 01	1,23E- 02	-2,03E -01
GWP- biogenic	kg CO ₂ - eq.	1,10E- 01	5,92E- 04	1,06E- 01	0,00E+ 00	-1,81E +01	3,06E- 02	0,00E+ 00	0,00E+ 00	1,33E+ 00	1,20E+ 00	1,26E- 03	1,29E- 04	1,23E- 03	4,72E- 02	-4,06E -02
GWP- luluc	kg CO ₂ - eq.	5,83E- 02	3,27E- 04	8,46E- 06	0,00E+ 00	1,12E+ 01	2,37E- 03	0,00E+ 00	0,00E+ 00	9,76E- 02	1,00E- 01	9,21E- 05	6,34E- 05	4,42E- 04	3,43E- 06	-3,06E -04
ODP	kg CFC 11 -eq.	1 - eq. 06 07 09 00 06 07 00 00 06 06 09 08 09 10 - 09 10 H+ 1,64E+ 2,13E- 1,29E- 0,00E+ 1,39E- 2,63E- 0,00E+ 0,00E+ 2,35E- 3,22E- 2,22E- 5,35E- 1,16E- 2,83E9,37														
AP	mol H+- eq.	mol H ⁺⁻ 1,64E+ 2,13E- 1,29E- 0,00E+ 1,39E- 2,63E- 0,00E+ 0,00E+ 2,35E- 3,22E- 2,22E- 5,35E- 1,16E- 2,83E- 9,37I eq. 00 03 04 00 01 02 00 00 01 01 04 04 03 05 -04 00 01 01 04 04 03 05 -04 00 00 01 01 01 04 04 04 03 05 -04 00 00 00 00 00 00 00 00 00 00 00 00 0														
EP- freshwater	kg P-eq.	kg P-eq. 1,30E- 05 06 00 03 03 00 00 02 02 05 05 04 06 -05														
EP- marine	kg N-eq.	9,11E- 02	5,84E- 04	9,21E- 05	0,00E+ 00	1,11E- 01	3,53E- 03	0,00E+ 00	0,00E+ 00	3,92E- 02	6,21E- 02	3,70E- 05	1,56E- 04	2,11E- 04	1,01E- 04	-2,16E -04
EP- terrestrial	mol N- eq.	1,21E+ 00	6,38E- 03	4,91E- 04	0,00E+ 00	4,44E- 01	3,93E- 02	0,00E+ 00	0,00E+ 00	3,45E- 01	5,90E- 01	3,26E- 04	1,70E- 03	2,11E- 03	9,68E- 05	-2,07E -03
РОСР	kg NMVOC- eq.	3,38E- 01	1,99E- 03	1,58E- 04	0,00E+ 00	7,57E- 02	1,21E- 02	0,00E+ 00	0,00E+ 00	9,49E- 02	1,92E- 01	8,96E- 05	5,23E- 04	5,51E- 04	4,07E- 05	-5,93E -04
ADPE	kg Sb- eq.	4,05E- 02	3,40E- 06	1,08E- 07	0,00E+ 00	2,51E- 04	3,65E- 04	0,00E+ 00	0,00E+ 00	3,88E- 04	2,86E- 04	3,66E- 07	6,13E- 07	1,36E- 06	1,02E- 08	-1,16E -06
ADPF	MJ	3,96E+ 02	8,14E+ 00	2,96E- 01	0,00E+ 00	2,47E+ 02	3,90E+ 01	0,00E+ 00	0,00E+ 00	8,80E+ 02	9,94E+ 02	8,31E- 01	2,01E+ 00	2,81E+ 00	7,16E- 02	-2,45 E+00
WDP	m³	3,20E+ 01	3,16E- 02	6,50E- 03	0,00E+ 00	6,32E+ 01	8,75E- 01	0,00E+ 00	0,00E+ 00	1,03E+ 01	7,55E+ 03	9,71E- 03	6,65E- 03	1,53E- 01	2,99E- 03	-9,77E -02
Caption	GWP-tota GWP-lulud EP-freshw Photoched use	c = Global ater = Eut	Warming rophication	Potential on – aquat	- land use tic freshw	and land ater; EP-m	use chang narine = E	ge; ODP = utrophica	Ozone De tion – aqu	pletion; A atic marin	P = Acidif ne; EP-terr	ication; estrial = E	utrophica	tion – ter	restrial; P	OCP =
Disclaimer	1 The resu the indica		environm	ental indic	cator shall	be used v	with care a	as the unc	ertainties	on these	results are	e high or a	as there is	limited ex	xperience	with

Table 28: Additional environmental impacts

				AD	DITION	AL ENVI	RONME	NTAL II	MPACT	S PER FI	XTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
PM	Disease Incidence	4,07E- 06	3,46E- 08	1,99E- 09	0,00E+ 00	1,90E- 06	2,90E- 07	0,00E+ 00	0,00E+ 00	7,50E- 07	3,10E- 06	7,08E- 10	1,00E- 08	7,24E- 09	4,96E- 10	-9,53 E-09
IRP	kBq U235 eq	1235 eq														
ETP-fw	CTUe	U235 eq 00 02 03 00 00 01 00 00 01 01 02 02 02 04 E-0. CTUE 1,35E+ 7,14E+ 6,70E- 0,00E+ 1,27E+ 1,65E+ 0,00E+ 0,00E+ 5,57E+ 1,05E+ 5,26E- 1,64E+ 4,94E+ 3,16E3,4 04 00 01 00 03 02 00 00 02 03 01 00 00 01 E+0 3,53E- 3,00E- 2,04E- 0,00E+ 3,10E- 3,61E- 0,00E+ 0,00E+ 1,71E- 2,43E- 1,62E- 5,99E- 7,61E- 3,58E1,1														
НТР-с	CTUh	CTUE 04 00 01 00 03 02 00 00 02 03 01 00 00 01 E+0														
HTP-nc	CTUh	2,16E- 05	7,09E- 09	7,61E- 10	0,00E+ 00	7,76E- 07	2,22E- 07	0,00E+ 00	0,00E+ 00	5,49E- 07	3,43E- 06	5,19E- 10	1,66E- 09	3,03E- 09	1,19E- 10	-2,35 E-09
SQP	-	5,79E+ 02	3,98E+ 00	1,61E- 01	0,00E+ 00	8,61E+ 02	2,04E+ 01	0,00E+ 00	0,00E+ 00	1,59E+ 02	2,24E+ 02	1,50E- 01	1,19E+ 00	2,35E- 01	1,56E- 01	-7,06 E-01
Caption	PM = Parti HTP-nc = H				U			health; E1	P-fw = Ec	o toxicity	– freshwa	ter; HTP-	= Humar	toxicity -	- cancer e	ffects;
Disclaimers	1 The resul- indicator. 2 This impa consider e- ionizing ra-	ct categor	ry deals m to possib	ainly with le nuclear	the even	tual impa	ct of low-	dose ioniz osure nor	ing radiat due to rac	ion on the	human h	ealth of t	he nuclea dergroun	r fuel cycle	e. It does i	not

Table 29: Parameters describing resource use

						RES	OURCE	USE PE	R FIXTU	RE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
PERE	МЈ	2,00E+ 02	1,73E- 01	-3,75E +00	0,00E+ 00	4,55E+ 02	4,80E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,39E- 02	2,27E+ 00	1,59E- 03	-1,39E +00
PERM	MJ	1,96E- 01	0,00E+ 00	3,75E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
PERT	MJ 02 01 03 00 02 00 00 00 02 02 01 02 00 03 +0 MJ 4,14E+ 8,64E+ -3,24E 0,00E+ 2,81E+ 4,16E+ 0,00E+ 0,00E+ 9,23E+ 1,05E+ 8,72E- 2,13E+ 2,99E+ 7,61E2,6															-1,39E +00
PENRE	MJ 02 01 03 00 02 00 00 00 02 02 01 02 00 03 +0 MJ 4,14E+ 8,64E+ -3,24E 0,00E+ 2,81E+ 4,16E+ 0,00E+ 0,00E+ 9,23E+ 1,05E+ 8,72E- 2,13E+ 2,99E+ 7,61E2,6 02 00 +00 00 00 00 02 03 01 00 00 02 +0															-2,60E +00
PENRM	MJ 02 00 +00 00 02 01 00 00 02 01 00 00 02 +01 00 00 02 +01 00 00 02 +01 00 00 00 02 +01 00 00 00 00 00 00 00 00 00 00 00 00 0															0,00E+ 00
PENRT	MJ	4,23E+ 02	8,64E+ 00	3,14E- 01	0,00E+ 00	2,81E+ 02	4,16E+ 01	0,00E+ 00	0,00E+ 00	9,23E+ 02	1,05E+ 03	8,72E- 01	2,13E+ 00	2,99E+ 00	7,61E- 02	-2,60E +00
SM	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
RSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
NRSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
FW	m³	3,17E+ 01	3,15E- 02	6,48E- 03	0,00E+ 00	6,12E+ 01	8,61E- 01	0,00E+ 00	0,00E+ 00	1,01E+ 01	7,20E+ 03	9,53E- 03	6,67E- 03	1,52E- 01	2,99E- 03	-9,66E- 02
Caption	resource renewak Total use	Use of reners used as ble primary of non-relations of non-relations of second	raw mate y energy r enewable	rials; PERT esources u primary e	= Total usused as ras nergy reso	se of rene w materia ources; SM	wable prii ls; PENRIV	mary ener	gy resoure non-renev	ces; PENR wable prin	E = Use of nary enerខ្	non-rene gy resourc	wable prir es used as	nary ener	gy excludi erials; PEN	ng non- RT =

Table 30: End-of-life (waste categories and output flows)

				WAS	STE CAT	EGORIE	S AND	ОИТРИ	T FLOW	S PER F	IXTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
HWD	kg	1,13E- 02	2,25E- 05	8,52E- 07	0,00E+ 00	3,79E- 04	1,49E- 04	0,00E+ 00	0,00E+ 00	6,69E- 04	1,75E- 03	6,32E- 07	5,38E- 06	7,92E- 07	1,42E- 07	-1,96E -06
NHWD	kg	1,15E+ 01	2,67E- 01	6,86E- 02	0,00E+ 00	3,57E+ 00	2,13E+ 00	0,00E+ 00	0,00E+ 00	3,07E+ 00	1,30E+ 01	2,90E- 03	8,52E- 02	1,06E- 02	3,17E- 01	-4,19E -02
RWD	b kg 1,27E- 03 05 06 00 04 04 04 00 00 00 00 01 03 02 02 01 -02 05 06 00 04 04 04 00 00 00 03 03 03 06 05 06 07 -06															-8,41E -06
CRU	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
MFR	kg	2,57E+ 00	0,00E+ 00	1,84E- 01	0,00E+ 00	1,99E+ 00	0,00E+ 00	0,00E +00								
MER	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
EEE	MJ	2,99E- 03	0,00E+ 00	2,09E- 01	0,00E+ 00	2,32E- 01	0,00E+ 00	0,00E +00								
EET	MJ	2,87E- 02	0,00E+ 00	5,58E+ 00	0,00E+ 00	2,28E+ 00	0,00E+ 00	0,00E +00								
Caption		Hazardous Is for recy											RU = Com	ponents fo	or re-use;	MFR =

Table 31: Biogenic carbon content

BIOGENIC CARBON	CONTENT PER FIXTURE	
Parameter	Unit	At the factory gate
Biogenic carbon content in a product	kg C	0
Biogenic carbon content in accompanying packaging	kg C	0,1173
Note	1 kg biogenic carb	on is equivalent to 44/12 kg of CO ₂

Group 6: Exclusive color (PVD on Stainless steel) is represented by HV1E-64 - Brushed copper

Table 32: Environmental impact indicators

					ENV	IRONM	ENTAL I	MPACT	S PER F	IXTURE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	СЗ	C4	D
GWP- total	kg CO ₂ - eq.	2,97E+ 01	5,27E- 01	2,26E- 01	0,00E+ 00	7,07E+ 00	2,76E+ 00	0,00E+ 00	0,00E+ 00	4,27E+ 01	5,91E+ 01	4,04E- 02	1,30E- 01	5,21E- 01	6,04E- 02	-2,54E -01
GWP-fossil	kg CO ₂ - eq.	2,95E+ 01	5,27E- 01	1,17E- 01	0,00E+ 00	1,40E+ 01	2,73E+ 00	0,00E+ 00	0,00E+ 00	4,13E+ 01	5,78E+ 01	3,90E- 02	1,30E- 01	5,20E- 01	1,33E- 02	-2,13E -01
GWP- biogenic	kg CO ₂ - eq.	1,20E- 01	5,69E- 04	1,10E- 01	0,00E+ 00	-1,81E +01	2,81E- 02	0,00E+ 00	0,00E+ 00	1,33E+ 00	1,20E+ 00	1,26E- 03	1,25E- 04	1,23E- 03	4,72E- 02	-4,07E -02
GWP- luluc	kg CO ₂ - eq.	4,33E- 02	3,15E- 04	8,84E- 06	0,00E+ 00	1,12E+ 01	2,09E- 03	0,00E+ 00	0,00E+ 00	9,76E- 02	1,00E- 01	9,22E- 05	6,11E- 05	4,44E- 04	3,43E- 06	-3,10E -04
ODP	kg CFC 11 -eq.	GG CFC 1,66E- 1,15E- 4,69E- 00 06 07 09 00 06 07 00 00 06 06 07 00 00 06 06 09 08 09 10 -08 00 00 06 00 00 00 00 00 00 00 00 00 00														
АР	mol H ⁺⁻ eq.	mol H ⁺⁻ 8,98E- 2,05E- 1,33E- 0,00E+ 1,39E- 2,42E- 0,00E+ 0,00E+ 2,35E- 3,22E- 2,22E- 5,16E- 1,17E- 2,82E9,9 eq. 01 03 04 00 01 02 00 00 01 01 04 04 03 05 -04 04 03 05 -04 04 04 03 05 -04 04 04 04 04 04 04 04 04 04 04 04 04 0														
EP- freshwater	eq. 01 03 04 00 01 02 00 00 01 01 04 04 03 05 -04 kg P-eq. 7,03E- 02 05 06 00 03 03 00 00 00 02 02 05 06 04 06 -05															-8,09E -05
EP- marine	kg N-eq.	6,00E- 02	5,62E- 04	9,49E- 05	0,00E+ 00	1,11E- 01	3,19E- 03	0,00E+ 00	0,00E+ 00	3,92E- 02	6,21E- 02	3,70E- 05	1,50E- 04	2,13E- 04	1,00E- 04	-2,37E -04
EP- terrestrial	mol N- eq.	7,54E- 01	6,13E- 03	5,04E- 04	0,00E+ 00	4,44E- 01	3,57E- 02	0,00E+ 00	0,00E+ 00	3,45E- 01	5,90E- 01	3,26E- 04	1,64E- 03	2,13E- 03	9,64E- 05	-2,29E -03
РОСР	kg NMVOC- eq.	2,17E- 01	1,92E- 03	1,63E- 04	0,00E+ 00	7,57E- 02	1,09E- 02	0,00E+ 00	0,00E+ 00	9,49E- 02	1,92E- 01	8,96E- 05	5,04E- 04	5,57E- 04	4,08E- 05	-6,57E -04
ADPE	kg Sb- eq.	2,07E- 02	3,27E- 06	1,12E- 07	0,00E+ 00	2,51E- 04	3,45E- 04	0,00E+ 00	0,00E+ 00	3,88E- 04	2,86E- 04	3,67E- 07	5,91E- 07	1,36E- 06	1,03E- 08	-1,19E -06
ADPF	МЈ	3,81E+ 02	7,83E+ 00	3,06E- 01	0,00E+ 00	2,47E+ 02	3,51E+ 01	0,00E+ 00	0,00E+ 00	8,80E+ 02	9,94E+ 02	8,31E- 01	1,94E+ 00	2,83E+ 00	7,12E- 02	-2,59 E+00
WDP	m³	2,18E+ 01	3,04E- 02	6,56E- 03	0,00E+ 00	6,32E+ 01	7,69E- 01	0,00E+ 00	0,00E+ 00	1,03E+ 01	7,55E+ 03	9,71E- 03	6,41E- 03	1,53E- 01	2,97E- 03	-9,82E -02
Caption	GWP-tota GWP-lulud EP-freshw Photoched use	c = Global ater = Eut	Warming rophication	Potential on – aquat	- land use tic freshw	and land ater; EP-m	use chang narine = E	ge; ODP = utrophica	Ozone De tion – aqu	pletion; A atic marin	P = Acidif e; EP-terr	cation; estrial = E	utrophica	tion – ter	restrial; P	OCP =
Disclaimer	1 The resu the indica		environme	ental indic	cator shall	be used v	with care a	as the unc	ertainties	on these	results are	e high or a	s there is	limited ex	xperience	with

Table 33: Additional environmental impact indicators

				AD	DITION	AL ENVI	RONME	NTAL I	MPACT:	S PER FI	XTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
PM	Disease Incidence	3,06E- 06	3,33E- 08	2,07E- 09	0,00E+ 00	1,90E- 06	2,62E- 07	0,00E+ 00	0,00E+ 00	7,50E- 07	3,10E- 06	7,08E- 10	9,66E- 09	7,33E- 09	4,94E- 10	-1,06 E-08
IRP	kBq U235 eq	1235 eq 00 02 03 00 00 01 00 00 01 00 01 02 02 02 04 E-0 TILE 7,20E+ 6,86E+ 6,86E- 0,00E+ 1,27E+ 1,52E+ 0,00E+ 0,00E+ 5,57E+ 1,05E+ 5,26E- 1,58E+ 4,96E+ 3,16E3,6														
ETP-fw	CTUe	U235 eq 00 02 03 00 00 01 00 00 01 01 02 02 02 04 E-0 CTUE 7,20E+ 6,86E+ 6,86E- 0,00E+ 1,27E+ 1,52E+ 0,00E+ 0,00E+ 5,57E+ 1,05E+ 5,26E- 1,58E+ 4,96E+ 3,16E3,6 00 01 00 03 02 00 00 02 03 01 00 00 01 E+0														
НТР-с	CTUh	CTUE 03 00 01 00 03 02 00 00 02 03 01 00 00 01 E+C														
HTP-nc	CTUh	1,10E- 05	6,82E- 09	7,75E- 10	0,00E+ 00	7,76E- 07	2,08E- 07	0,00E+ 00	0,00E+ 00	5,49E- 07	3,43E- 06	5,19E- 10	1,60E- 09	3,04E- 09	1,21E- 10	-2,48 E-09
SQP	-	3,81E+ 02	3,82E+ 00	1,67E- 01	0,00E+ 00	8,61E+ 02	1,84E+ 01	0,00E+ 00	0,00E+ 00	1,59E+ 02	2,24E+ 02	1,50E- 01	1,14E+ 00	2,46E- 01	1,56E- 01	-8,25 E-01
Caption	PM = Parti HTP-nc = H			,	U			health; E1	P-fw = Ec	o toxicity	– freshwa	ter; HTP-0	= Humar	toxicity -	- cancer et	ffects;
Disclaimers	1 The resultindicator. 2 This impaconsider endorizing radionizing	ct categor	ry deals m to possib	ainly with le nuclear	the even	tual impa	ct of low-	dose ioniz osure nor	ing radiat due to rac	ion on the	e human h waste disp	ealth of ti osal in un	he nuclea dergroun	r fuel cycle	e. It does r	not

Table 34: Parameters describing resource use

						RES	OURCE	USE PE	R FIXTU	RE						
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
PERE	МЈ	2,62E+ 02	1,66E- 01	-3,92E +00	0,00E+ 00	4,55E+ 02	4,06E+ 00	0,00E+ 00	0,00E+ 00	1,81E+ 02	1,37E+ 02	1,71E- 01	3,27E- 02	2,28E+ 00	1,61E- 03	-1,40E +00
PERM	MJ	1,96E- 01	0,00E+ 00	3,93E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
PERT	MJ 02 01 03 00 02 00 00 00 02 02 01 02 00 03 +0 MJ 3,99E+ 8,31E+ -3,23E 0,00E+ 2,81E+ 3,74E+ 0,00E+ 0,00E+ 9,23E+ 1,05E+ 8,72E- 2,06E+ 3,01E+ 7,56E- 2,7															-1,40E +00
PENRE	MJ 02 01 03 00 02 00 00 00 02 02 01 02 00 03 +0 MJ 3,99E+ 8,31E+ -3,23E 0,00E+ 2,81E+ 3,74E+ 0,00E+ 0,00E+ 0,00E+ 1,05E+ 8,72E- 2,06E+ 3,01E+ 7,56E2,7 02 00 +00 00 02 01 00 00 02 03 01 00 00 02 +0 8,64E+ 0,00E+ 3,56E+ 0,00E+ 0,															-2,76E +00
PENRM	MJ 02 00 +00 00 02 01 00 00 02 01 00 00 02 03 01 00 00 02 +00 00 00 02 00 00 00 00 00 00 00 00 00 0															0,00E+ 00
PENRT	MJ	4,08E+ 02	8,31E+ 00	3,26E- 01	0,00E+ 00	2,81E+ 02	3,74E+ 01	0,00E+ 00	0,00E+ 00	9,23E+ 02	1,05E+ 03	8,72E- 01	2,06E+ 00	3,01E+ 00	7,56E- 02	-2,76E +00
SM	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
RSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
NRSF	MJ	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00
FW	m³	2,15E+ 01	3,03E- 02	6,53E- 03	0,00E+ 00	6,12E+ 01	7,56E- 01	0,00E+ 00	0,00E+ 00	1,01E+ 01	7,20E+ 03	9,53E- 03	6,43E- 03	1,52E- 01	2,97E- 03	-9,72E- 02
Caption	resource renewak Total use	es used as ole primar e of non-re	raw mate y energy r enewable	imary ener rials; PERT esources u primary e FW = Net	= Total usused as ras nergy reso	se of rene w materia ources; SM	wable prii ls; PENRIV	mary ener	gy resoure non-renev	ces; PENR wable prin	E = Use of nary enerខ្	non-rene gy resourc	wable prir es used as	nary ener	gy excludi erials; PEN	ng non- RT =

Table 35: End-of-life (waste categories and output flows)

				WAS	STE CAT	EGORIE	S AND	OUTPU	T FLOW	S PER F	IXTURE					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
HWD	kg	5,82E- 03	2,16E- 05	8,80E- 07	0,00E+ 00	3,79E- 04	1,42E- 04	0,00E+ 00	0,00E+ 00	6,69E- 04	1,75E- 03	6,32E- 07	5,19E- 06	8,23E- 07	1,42E- 07	-2,33E -06
NHWD	kg	01 01 02 00 00 00 00 00 00 01 03 02 02 01 -02 kg 1,09E- 5,17E- 2,07E- 0,00E+ 8,70E- 1,50E- 0,00E+ 0,00E+ 6,47E- 5,94E- 6,11E- 1,30E- 7,84E- 4,19E9,39E														
RWD	kg															-9,39E -06
CRU	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
MFR	kg	2,57E+ 00	0,00E+ 00	1,84E- 01	0,00E+ 00	2,05E+ 00	0,00E+ 00	0,00E +00								
MER	kg	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E+ 00	0,00E +00
EEE	MJ	2,99E- 03	0,00E+ 00	2,09E- 01	0,00E+ 00	2,32E- 01	0,00E+ 00	0,00E +00								
EET	MJ	2,87E- 02	0,00E+ 00	5,58E+ 00	0,00E+ 00	2,28E+ 00	0,00E+ 00	0,00E +00								
Caption		Hazardous Is for recyc												oonents fo	or re-use;	MFR =

Table 36: Biogenic carbon content

BIOGENIC CARBON CONTENT PER FIXTURE					
Parameter	Unit	At the factory gate			
Biogenic carbon content in a product	kg C	0			
Biogenic carbon content in accompanying packaging	kg C	0,1173			
Note	1 kg biogenic carbon is equivalent to 44/12 kg of CO ₂				

Additional information

Technical information on scenarios

Table 37: Average transport to the building site (A4)

Scenario information	Value	Unit
Fuel type	Diesel	-
Vehicle type	Euro 5	-
	HV1E (16 and 20, 19, 40, 27, 60, 64): 452 km	
	HV1E2 (16 and 20, 19, 40, 27, 60, 64): 804 km	
	HV1EN (16 and 20, 19, 40, 27, 60, 64): 630 km	
Average transport distance	HV1E-150 (16 and 20, 19, 40, 27, 60, 64): 945 km	km
	HV1EN2 (16 and 20, 19, 40, 27, 60, 64): 1.299 km	
	HV1EN-150 (16 and 20, 19, 40, 27, 60, 64): 986 km	
	HV1E2-150 (16 and 20, 19, 40, 27, 60, 64): 1.299 km	
Capacity utilization (including empty runs)	85 % for trucks	%
	930 kg/m³ (with lorry)	
Gross density of products transported	697 kg/m³ (with flight)	kg/m³
	442 kg/m³ (with steel cage)	
Capacity utilization volume factor	1	-

Table 38: Installation of the product in the building (A5)

Scenario information		Value						Unit
	Installation is simple and does not entail any relevant energy consumption or use of materials.							
Ancillary materials	Mounting ins	tructions ar	e included w	vith the pro	oduct or ca	n be down	loaded on	kg
	www.VOLA.co	om						
	Packaging mat	terials are car	dboard, paper	r, LDPE, and E	PS foil.			
Water use			No	ot relevant				m³
Other resource use			No	ot relevant				kg
Energy type and consumption			No	ot relevant				kWh
	Materials	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	
	iviateriais	HV1E-16	HV1E2-19	HV1E-40	HV1E-27	HV1E-60	HV1E-64	
	EPS foil	0,091	0,091	0,091	0,091	0,091	0,091	
Waste materials	LDPE	0,007	0,007	0,007	0,008	0,009	0,009	kg
	Cardboard	0,203	0,203	0,203	0,203	0,203	0,203	
	Paper	0,032	0,032	0,033	0,043	0,032	0,043	
	SUMMARY	0,334	0,335	0,334	0,345	0,335	0,346	
Output materials		0						kg
Direct emissions to air, soil, or		0					kg	
water				J				۱٬۶

Table 39: Reference service life

RSL information	Unit
Reference service Life	30 Years
Declared product properties	As appropriate
Design application parameters	As appropriate
Assumed quality of work	As appropriate
Outdoor environment	As appropriate
Indoor environment	As appropriate
Usage conditions	As appropriate
Maintenance	As appropriate

Table 40: Use (B1-B7)

Scenario information	Value	Unit
B1 – Use		
	Sensor "hand-free" washbasin taps ensure low water consumption thanks to efficient control electronics. The actual amount of water and energy that is consumed during use partly depends on user behavior. The technical operating scenario is available in the "Consumption data" (B6-B7).	
B2 - Maintenance		
Maintenance process	Maintenance instructions are included with the VOLA product and can also be downloaded on www.vola.com	-
Maintenance cycle	1.560 times	/RSL
Ancillary materials for maintenance (specify which)	Cloth, little soap for cleaning, cotton bud, and detergents that are meant for the cleaning surface of the product (according to the maintenance instructions included in the VOLA product). Soap (7,8 kg/RSL) Water (816 l/RSL)) Acetic acid (3,6 l/RSL))	kg/RSL
Waste materials resulting from the maintenance (specify which)	0	kg
Net freshwater consumption during maintenance	0,816	m³
Energy input during maintenance	0	kWh
B3 – Repair		
Repair process	The product is made of parts that can be changed and replaced by new parts. Inspection is performed and a description of needed repair is noted on a sales order in agreement with the customer and Technical Support. The repair is carried out and the product and returned to the customer. If repair is impossible, the customer will be contacted by technical support and a new product can be offered.	-
Inspection process	As part of the repair process.	-
Repair cycle	0,1	/year

Ancillary materials	NA					kg/RSL		
(specify which)								
	Materials	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	
	Materials	HV1E-16	HV1E2-19	HV1E-40	HV1E-27	HV1E-60	HV1E-64	
Waste materials	Hoses	0,119	0,145	0,119	0,119	0,145	0,119	1 /50:
(specify which)	Cartridges	0,046	0,046	0,046	0,046	0,046	0,046	kg/RSL
, , ,	Pilator	0,001	0,002	0,001	0,001	0,002	0,001	
	SUMMARY	0,166	0,193	0,166	0,166	0,193	0,166	
Net freshwater		•	•				•	
consumption during				0				m³
repair								
Energy input during						L/DCI		
repair	0					kg/RSL		
B6 + B7 - Use of energ	y and water							
Ancillary materials	Not specified kg					l.=		
specified by material						кд		
Net freshwater	175 3 /100 1	175 m³ (100 cycles per day, lifespan of 30 years) with the standard 1,9 l/min flow rate m³					m³	
consumption	175 m ³ (100 cycles	per day, lifes	span of 30 ye	ars) with the	e Standard 1	1,9 1/min 1101	w rate	m ²
Type of energy carrier		106					kWh/RSL	
The power output of	40,0003					LAA/		
equipment		≤0,0003 kW					KVV	
Characteristic	Not specified ap					As		
performance						appropriate		
Further assumptions								Δ.ς.
for scenario	Not specified As					-		
development		appropria						appropriate

Table 41: End of life (C1-C4)

Scenario information		Value					Unit	
Collected separately	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6		
	HV1E-16	HV1E2-19	HV1E-40	HV1E-27	HV1E-60	HV1E-64	kg	
	2,31E+00	2,32E+00	2,22E+00	2,39E+00	2,37E+00	2,28E+00		
Collected with mixed waste				-			kg	
Reuse			()			kg	
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6		
Recycling	HV1E-16	HV1E2-19	HV1E-40	HV1E-27	HV1E-60	HV1E-64	kg	
	1,94E+00	1,97E+00	1,87E+00	2,00E+00	1,98E+00	1,90E+00		
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6		
Energy recovery	HV1E-16	HV1E2-19	HV1E-40	HV1E-27	HV1E-60	HV1E-64	kg	
	6,43E-02	6,48E-02	6,43E-02	6,46E-02	6,48E-02	6,46E-02		
Landfilling	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6		
	HV1E-16	HV1E2-19	HV1E-40	HV1E-27	HV1E-60	HV1E-64	kg	
	2,54E-01	2,47E-01	2,37E-01	2,83E-01	2,86E-01	2,72E-01		
Assumptions for scenario							As appropriate	
development			•	-			As appropriate	

Table 42: Re-use, recovery, and recycling potential (D)

Scenario information/Material		Value					Unit
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	
	HV1E-16	HV1E2-19	HV1E-40	HV1E-27	HV1E-60	HV1E-64	
Energy recovery	6,43E-02	6,48E-02	6,43E-02	6,46E-02	6,48E-02	6,46E-02	kg
Materials recovery	1,80E+00	1,82E+00	1,73E+00	1,85E+00	1,83E+00	1,76E+00	kg

Indoor air

The EPD does not give information on the release of dangerous substances to the indoor air because the horizontal standards on measurement of the release of regulated dangerous substances from construction products using harmonized test methods according to the provisions of the respective technical committees for European product standards are not available.

Soil and water

The EPD does not give information on the release of dangerous substances to soil and water because the horizontal standards on measurement of the release of regulated dangerous substances from construction products using harmonized test methods according to the provisions of the respective technical committees for European product standards are not available.

References

Publisher	L epddanmark
	www.epddanmark.dk
Program operator	Danish Technological Institute Buildings & Environment Gregersensvej DK-2630 Taastrup www.teknologisk.dk
LCA-practitioner	Kristyna Davidova Bureau Veritas, HSE Danmark Oldenborggade 25-31 7000 Fredericia Denmark E-mail: kristyna.davidova@bureauveritas.com Odyssefs Papagiannidis Bureau Veritas, HSE Danmark Oldenborggade 25-31 7000 Fredericia
	Denmark E-mail: odyssefs.papagiannidis@bureauveritas.com
LCA software /background data	SimaPro 9.2/ Ecoinvent 3.7.1 (2021) Generic data are primarily based on life cycle inventory data from SimaPro 9.2 Professional Database 2020 and Ecoinvent version 3.7.1
3 rd party verifier	Ninkie Bendtsen Niras A/S Sortemosevej 19 3450 Allerød Denmark www.niras.dk

General program instructions

Version 2.0, www.epddanmark.dk

EN 15804

DS/EN 15804 + A2:2019 -" Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products"

Product specific PCR

Part B: Requirements on the EPD for Bathroom and showers.

From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU)

EN 15942

DS/EN 15942:2011 –" Sustainability of Construction Works – Environmental product declarations – Communication format business-to-business"

ISO 14025

DS/EN ISO 14025:2010 –" Environmental Labels and Declarations – Type III environmental declarations – Principles and procedures"

ISO 14040

DS/EN ISO 14040:2008 -" Environmental Management - Life cycle assessment - Principles and framework"

ISO 14044

DS/EN ISO 14044:2008 –" Environmental Management – Life cycle assessment – Requirements and guidelines"

PEF 2018

Product Environmental Footprint Category Rules Guidance 2018

BUILD REPORT 2021

BUILD REPORT 2021: 32" Version 2021 - lifetime tables: group 53 (3) https://build.dk/Pages/BUILD-levetidstabel.aspx